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A b s t r a c t  

Within the Debye approximation the temperature- 
dependent correlations of atomic vibrations are shown 
to involve essentially a single integral which is a 
function of two parameters. A tabulation of this 
integral is presented, together with high- and low- 
temperature expansions. A comparison with much 
more elaborate calculations for real crystals suggests 
that the simple method described might be accurate to 
~20%. 

1. I n t r o d u c t i o n  

The correlation between thermal vibrations of the 
atoms in a crystal is known to have a significant 
influence on a variety of atomic, electron and neutron 
scattering phenomena. Thus Nelson, Thompson & 
Montgomery (1962) have shown that correlations can 
significantly modify the influence of thermal vibrations 
on focused collision sequences in crystals. Chicherov 
(1968), Boers (1977) and Martin (1980) have dis- 
cussed the effect of thermal vibrations and correlations 
on low-energy ion scattering from solid surfaces and, 
for higher-energy ions, Jackson & Barrett (1979) have 
shown that correlations markedly reduce the surface 
backscattering yield. In multiple-scattering LEED 
calculations the correlations are likewise important 
(Pendry, 1974). 

These observations have led to several detailed 
machine calculations of the dependence of the corre- 
lations on atomic separation and temperature for 
various 'real' crystals in the Born-von K~rm/m model: 
Nb and Mo (Jackson, Powell & Dolling, 1975); LiF, 
MgO, RbF, RbCI and NaCI (Chen, de Wette & 
AUdredge, 1977; Chen, AUdredge & de Wette, 1976; 
Chen & de Wette, 1978; de Wette, 1980). 

In view of the widespread use of the Debye model as 
a simple and moderately accurate approximation for 
phonon effects in crystals it is surprising that, to date, 
no comprehensive analysis of the temperature depen- 
dence of correlations in the Debye model appears to 
have been published. The most detailed study to date 
appears to be that of Nelson et al. (1962). The present 
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paper extends and systematizes their treatment. We 
first establish certain basic definitions following the 
notation of Wilks (1962). If uz(r,t ) is the z component 
of the displacement at time t of an atom of equilibrium 
position r, then the variance tTE[uz(r,t)] is the expec- 
tation value of [Uz(r,t) -- (u(r,t))] 2. If we measure 
Uz(r,t) relative to the equilibrium position r then 
(uz(r,t)) = 0 and 

o2[u~(r,t)] = (uE(r,t)). (1) 

As is well known, e.g. Willis & Pryor (1975), in the 
Debye approximation 

(uE(r,t))= (3hET/mkO2)[~(Oo/T) + OJ4T],  (2) 

where ~(x), the Debye integral 

1 x 
f Y dy, (3) 

• (x) = x exp (y ) -  1 
0 

is widely tabulated (e.g. James, 1948). 
It should perhaps be emphasized that (2) refers to the 

expectation value of the square of the component of the 
displacement in a particular direction. The expectation 
value of the square of the total displacement is three 
times greater. 

The covariance between the components of the 
displacements of two atoms with equilibrium positions 
r I and r E at times t 1 and t 2 is defined as 

cov[uz(rl,tl), Uz(r2,t2)] 

= ( [u~(r l , t l ) -  (Uz(rl,tl))] [u~(rE,t2)- (uz(rE,t2))]) 

= (u~(rl,tl)Uz(rE,t2)) (4) 

and the correlation coefficient is defined as 

cov[uz(rl,tl), u~(rE,t2)] 
p[Uz(rl,tl), u~(rz,t2)] = (5) 

a[u~(rl,tl)] a[Uz(rE,t2)] 

For equivalent identical atoms 1 and 2, 

a[Uz(rl,tl)] a[uz(r2,t2)] = (uE(r,t)). 

In the present context it is the covariance which is most 
directly related to the physical variables of interest. 
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However, because the covariance tends to infinity as 
T/Ov --" oo, whereas the correlation coefficient remains 
finite, it is often convenient to display results in terms of 
the correlation coefficient. Furthermore, in the present 
approximation, the correlation coefficient, unlike the 
covariance, is identical for atoms of different masses in 
the same crystal. 

If the thermal velocities of the atoms in the crystal 
are small compared with the velocity of the scattered 
particle then, as discussed by Van Hove (1954), the 
relevant quantity is the equal-time correlation 
coefficient t~ = t 2 = t and, in the present study, we 
confine our attention to this equal-time problem. 

In earlier studies Glauber (1955) and Nelson et al. 
(1962) found that, within the Debye approximation 
when (T/Oo)--,0, 

p[us(rl,t), Uz(rE,t)] = 211 --cos(qor)]/(qor) 2, (6) 

where T is the temperature, Oo is the Debye tempera- 
ture, qo is the radius of the Debye sphere and r = I r~ - 
r21. For T >> O o Nelson et al. (1962) and Scheringer 
(1973) found that 

si (qo r) 
p[us(rl, t), Uz(r2,t)] - - - ,  (7) 

(qo r) 

where si (x) is the sine integral function 

si(x) / sin(u) = du, (8) 
U 

0 

which is tabulated by Abramowitz & Stegun (1965). 
Fig. 1 shows the dependence of the correlation 

coefficient on qor at these two temperature limits. 
Clearly they differ widely, except when qv r--, 0. It is 
therefore important to determine the temperature 
dependence of the correlations. 

1'0- ~ X  

o.s. , \ 7 o ~ o o  

k 
X x 

o 1.b zb 
% r/2 r~ 

Fig. 1. The variation of the correlation coefficient (p) with qD r in 
the high-temperature (solid curve) and low-temperature (broken 
curve) limits. 

2. Correlations as a function of  temperature 

The z component of the displacement of an atom is 
given by 

Uz(r,t) = f Us(q) c o s [ q . r -  co(q) t + ~(q)] dq, (9) 

where Uz(q) is the z component of the amplitude of a 
phonon mode of wave vector q, angular frequency o)(q) 
and phase J(q). The integration should properly be 
performed within the Brillouin zone. In the Debye 
approximation it is evaluated within the Debye sphere, 
q < qo. Because we are concerned with equal-time 
correlations we can conveniently set t in (9) to zero. 
Accordingly, 

cov[us(r0, us(r2)] 

= ( f  Us.l(q) cos[q. r  1 + J(q)] dq 

x f Uz,2(q) costq . r  2 + fi(q)] dq). (10) 

Because the 6(q)'s are uncorrelated the expectation 
value of the cross terms with different q's is zero. If we 
choose r I and r E to be parallel to the polar axis in 
reciprocal space, then (10) becomes 

( f  Uz, l(q) Uz,2(q) cos[qr I cos 0 + 6(q)] 

x cos[qr 2 cos 0 + fi(q)] dq) 

q o  n 2 n  

= ½ Y f f (U,.l(q) U~.2(q)) (cos(qr cos 0) 
0 0 0 

+ cos[q(r 1 + r 2) cos 0 + 26(q)]) 

x q2 sin 0 d~o dO dq 

C/on 

= zr f f (Uz.l(q) Us,2(q) ) cos(qr cos 8) q2 sin OdOdq 
0 0 

2zr q~ 
= - - ~ "  (U, l (q)U s 2(q)) sin(qr)qdq, (11) 

r , J  ' ' 
0 

where r = I r~ - r21. 
The energy E of a harmonic wave of amplitude Us(q) 

in a material with N atoms of mass m is 

E = ½off U~(q) Nm. (12) 

From the Boltzmann distribution factor and the energy 
of a quantum-mechanical oscillator 

2h [~  exp(ho)/kT)-i 1]  (13) (U2(q)) = g(q) N--N--~m + ' 

where g(q) = 3N/4XqaD is the density of states in 
reciprocal space (not the number of states between q 
and q + dq). In the Debye approximation o) = 
qkOo/hqo so that 
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(U~,~(q) V.,2(q)) 

3h 2 

2r&Onq2(mt m2) v2 q + exp(qOD/qD T ) -  1 ' 

(14) 
i.e° 

cov[u~(rl), u~(r2)] 

3h 2 

(m I m2)1/2 kO n q2 r 

io[  1 ]sin qr, dq. 
x + [exp(qOn/qn T ) -  1] 

(15) 

This result is equivalent to that given by Pendry (1974) 
for the special case of the monatomic simple cubic 
structure. 

By analogy with the usual formulation for the 
variance in the Debye approximation (i.e. equations 2 
and 3), we can express this result as 

COV [Uz(rl), u~(re)] 

= (mlm2)l/2k02 ° rl(Oo/T' qor) + 

 16, 
x 2(qn r) 2 , 

where 
1 x sin(uy/x) 

rl(x,y) = Y f [exp(u) -- 1] du. (17) 
O 

Since r/(x,0) = @(x) and since ~(x)  cannot be 
expressed in closed form it is clear that numerical 
evaluation of rl(x,y) is necessary. For (On~T) --, ~ ,  (2), 
(3), (5), (16) and (17) reduce to the low-temperature 
limit of (6), while for (On~T) -, 0 the high-temperature 
result of (7) is recovered. 

Whilst the method used to obtain (11) is perhaps the 
most obvious one there are alternatives. If we adopt the 
approach employed in an earlier study (Martin, 1980) 
on the correlations of a row of atoms we can derive a 
high-temperature expansion: 

cov[u~(r,),Uz(r2)l 

3h 2 T I' 1 2 
= [ ~ si (qn r) + 

(mlm2)mkO 2 qD r qnr 

(__~_)2, [ s i n ( q n r ) _ r ~ (  _2" Be. qx i 
x ,,=,~ (2n)!n Jo \ q n ]  

x cos(qxr)dqx]}, (18) 

where the B's are Bernoulli's numbers (B E = 1/6, B 4 = 
--1/30, B 6 = 1/42 ... .  ). The series expansion is 

convergent for T > On/2n. Formally the nth term can 
be expressed analytically as a polynomial of order 2n in 
1/qn r with products of cos(q n r) and sin(qn r). How- 
ever, the rounding errors diverge as (2n)! so that 
accurate evaluation can only be achieved by per- 
forming n numerical integrations. 

The earlier approach also yields a 'low-temperature' 
expansion 

cov[u~(rl),Uz(r2)] 

(rn 1 m2) I/2 kO2B 2(qo r) 2 

+ ~ {exp( -nOJT)[ (qnr /n)s in (qn  r) 
n = - I  

- (On/T)  cos(qn r)l + ( O n / r ) / [ ( n O n ~ T )  ~ 
1 ]}  

+ (qDr)2] -1 + ~ e x p ( - - n O n / T ) s i n ( q n r )  . 
n (qD r) 

(19) 

In fact this expansion is convergent for all tempera- 
tures. However, the convergence is very slow at 
intermediate to high temperatures. 

All three expressions, (16), (18) and (19), have been 
investigated and agree to within the truncation errors. 
Equation (16) does appear to be the best option for 
both numerical calculations and tabulation purposes. 

3. Results 

As shown in Fig. 1, the correlation coefficient falls 
rapidly with increasing qnr, making it difficult to 
display its variation over a wide range of qnr and 
T/On. Since the temperature variation is the main new 
result the isometric projection in Fig. 2 shows the 
variation of the correlation coefficient (as a function of 
temperature and qn r) divided by its value at the same 
qn r but with (T/Oo)--, ~ .  For brevity we shall write 
the correlation coefficient p[u~(rl), u~(r2)] at tempera- 

_e~,_~2 
!I',L!IL,. 

r/oD 
.0 

0 

0 

Fig. 2. Isometric projection of the variation with qD r and T/O D of 
the correlation coefficient divided by its high-temperature limit. 
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ture T, Debye temperature O D and Debye-sphere radius 
qD as P(qD r, T/Oo), since it is only dependent on the 
two parameters, qo r and T/O D, where r = I r 1 -- r21. 

To display the full temperature range 0 < T/O D < oo 
on a single projection the transformation v = x/(1 + x), 
Oo/T = x, 0 < v < 1 is used. 

It is immediately apparent from Fig. 2 that, for all 
the values of qo r displayed, most of the temperature 
variation of p(qor, T/OD) occurs for T < Oo. More 
detailed studies show that P(qD r, 1) is never less than 
96% of p(qor, oo). Consequently, for T > O o it will 
often be quite acceptable to employ the high-tempera- 
ture result of  (7). 

It may at first appear surprising that the correlations 
invariably rise with increasing temperature, since we 
associate the high-temperature limit with increased 
generation of  short-wavelength phonons. The physical 
reason can be seen from (14). For T >> 0 D (U2z(q)) 
varies as 1/q 2. For T- - .0  the thermally excited 
contribution to (U2~(q)) varies as exp( -aq) /q  but the 
zero-point motion contribution varies as 1/q so that the 
relative amplitudes of  the short-wavelength normal 
modes are actually less at high temperatures, increasing 
the degree of  correlation; the reduced correlation in the 
low-temperature limit is directly due to the zero-point 
motion. As an aid to work at low and intermediate 
temperatures r/(x,y) is tabulated in Table 1. To allow 
tabulation over the full range of x and y, x is expressed 

in terms of  v as above and similarly w = y/(1 + y), 
0 < w < l .  

Interpolation is readily performed by calculating v 
and w and using the simple bilinear interpolation 
formula (Young & Gregory, 1972) 

r l (v ,w)=Ao + AlV + A2w + A3vw (20) 

with the A's chosen to fit (20) at the four closest mesh 
points. Except at the extremes of temperature (where 
the methods described in the next section are prefer- 
able) the typical absolute accuracy of interpolation is 
-~0.002 with a maximum error of ~0 .005 .  If higher 
accuracy is required ri(x,y) must be evaluated 
numerically. 

In the case of crystal structures where the inter- 
atomic spacing is determined by only a single lattice 
parameter, the value of qn r is only dependent on which 
type of atom pair is considered; it is independent of the 
lattice parameter. Table 2 gives the values of  r/for the 
six nearest neighbours in the widely occurring mon- 
atomic f.c.c. (qo = 2 x 31/3 nz/3/a) and b.c.c. (qD = 22/3 
× 31/3 n2/3/a) materials, allowing 17 to be found by 
simple linear interpolation in v. Some of the values of  
qD r relevant to f.c.c, crystals also occur in the ideal 
h.c.p, case but since, in practice, the c/a ratio of h.c.p. 
materials is seldom ideal it will usually be necessary to 
employ Table 1 with qo = 2 x 31/6 7r2/3/c v3 a 2/3. 

Table 1. Tabulation of  rl(x,y) where x = O n / T  a n d  y = q n r  

To allow the tabulation over the full range o f x  and y,  0 _< x _< oo, 0 _< y _< oo, the results are presented as a function of v = x/(1 + x ) ,  

0 _ < v _ < l a n d w - - y / ( 1  + y ) , 0 _ < w _ <  1. 

v 

0 .0  0.05 0. I0 1.15 0-20 0.25 0 .30  0.35 0 .40  0-45 0 .50  0.55 0 .60  0-65 0 .70  0.75 0 .80  0-85 0-90 0-95 1.0 

x 

w y 0-0 0 .053 0.111 0.176 0-250 0.333 0 .429 0.538 0 .667 0 .818 1.00 1.22 1.50 1.86 2.33 3 .00  4 .00  5-67 9 .00 19.0 oo 

0-000 0.000 1.0 0-987 
0.250 0-333 0.994 0.891 
0-350 0.538 0.984 0-971 
0.450 0-818 0.964 0.951 
0.550 1.122 0.921 0.909 
0.600 1-500 0.883 0.872 
0.640 1.778 0.840 0.830 
0.670 2.030 0.797 0-788 
0.700 2.333 0.743 0-734 
0.720 2.571 0-698 0.691 
0.740 2-846 0.646 0.639 
0.755 3.082 0.601 0.595 
0.770 3-348 0.551 0-547 
0.785 3.651 0.497 0.494 
0.800 4-000 0.440 0.437 
0.815 4.405 0-380 0.378 
0.825 4-714 0.341 0.340 
0.835 5-061 0-304 0-303 
0-850 5.667 0-256 0-256 
0.865 6-407 0.222 0-222 
0.880 7.333 0.203 0-203 
0-900 9-000 0.185 0.184 
0-920 11-5  0-134 0.133 
0.940 15.6 0-104 0.104 
0-960 24.0 0.065 0.065 
0-980 49-0 0.032 0.032 
0.000 co 0.000 0-000 

0.973 0.957 0.939 0.920 0.898 
0-967 0.951 0-934 0.914 0.893 
0.957 0.942 0.925 0.906 0.884 
0.938 0.923 0-906 0.888 0.867 
0.896 0-882 0.867 0.850 0.831 
0-860 0.847 0.833 0.817 0.799 
0-819 0.807 0.794 0-779 0.762 
0.778 0-767 0.755 0.741 0.726 
0.726 0.716 0.705 0.693 0.679 
0.683 0-674 0.664 0.653 0.641 
0-632 0.625 0.616 0.606 0.596 
0-589 0.582 0.575 0.567 0-557 
0-542 0.536 0.530 0.523 0.515 
0-489 0-485 0.480 0.474 0-468 
0.434 0.431 0.427 0.423 0-418 
0.376 0-374 0-372 0.369 0.366 
0.339 0-337 0.335 0-334 0.331 
0-303 0.302 0.301 0.300 0-298 
0-255 0.255 0.255 0-255 0.254 
0.221 0.221 0.221 0.221 0.221 
0-203 0.202 0-202 0.202 0-201 
0.184 0-183 0-182 0.181 0.180 
0.133 0.133 0.133 0.133 0-133 
0.104 0.104 0.103 0-103 0-103 
0-065 0-065 0.065 0.065 0.065 
0.032 0.032 0.032 0.032 0-032 
0.000 0-000 0-000 0-000 0.000 

0.873 0.846 0.814 0-778 0.735 0.686 0.628 0.560 
0.868 0.841 0.809 0.773 0-732 0.683 0-626 0-558 
0.860 0.833 0.802 0-767 0-726 0.677 0.621 0.554 
0.844 0.817 0-787 0.753 0.713 0.666 0-611 0-546 
0.809 0.784 0.756 0-724 0.686 0.643 0-591 0-530 
0.778 0.755 0-729 0-698 0.663 0.622 0-573 0-515 
0.743 0.722 0.697 0.669 0.636 0.598 0.553 0-499 
0.708 0.689 0.666 0.640 0.610 0.574 0.532 0.482 
0-663 0-646 0.626 0.603 0-575 0.544 0.506 0.460 
0-627 0-611 0.593 0.572 0.547 0.518 0.484 0.442 
0.584 0.570 0.554 0.536 0.514 0.488 0-458 0.421 
0.547 0.535 0-521 0.504 0.485 0.463 0.435 0.402 
0.506 0.495 0.484 0-470 0.453 0.434 0.410 0.381 
0.461 0.452 0.443 0.432 0.418 0-402 0.383 0.358 
0.412 0.406 0.399 0.390 0.380 0.368 0.352 0.332 
0.362 0-358 0.353 0.347 0.340 0.331 0-319 0.305 
0-329 0.326 0-322 0.318 0.313 0.306 0.297 0.285 
0.297 0.295 0.292 0.289 0.286 0.281 0.275 0.266 
0.254 0.253 0.252 0-251 0.249 0.246 0.243 0.237 
0.221 0.221 0.220 0.291 0.219 0-217 0.215 0.211 
0.201 0.200 0.199 0.198 0.197 0.195 0.193 0-189 
0.179 0-178 0.176 0.174 0.172 0.169 0.166 0.162 
0.132 0.132 0.132 0.131 0.131 0.130 0.129 0.127 
0.102 0.102 0.101 0.101 0.100 0.099 0-098 0.096 
0-064 0-064 0.064 0.064 0.064 0.064 0-064 0.063 
0.032 0-032 0-032 0.032 0.032 0.032 0.032 0.032 
0-000 0-000 0-000 0-000 0.000 0-000 0.000 0-000 

0.480 0.388 0-286 0.183 0.087 0.000 
0.479 0.387 0-286 0.182 0.087 0.000 
0.476 0.385 0.285 0.182 0.087 0.000 
0-470 0.381 0.283 0-182 0.086 0.000 
0-458 0.374 0.279 0-180 0.086 0.000 
0-447 0.367 0.276 0.179 0-086 0.000 
0-434 0-358 0.271 0.178 0-086 0.000 
0-422 0-350 0-267 0.177 0-086 0.000 
0-405 0-339 0.262 0.175 0-086 0.000 
0.392 0.330 0-257 0-174 0.086 0.000 
0.375 0.319 0.251 0-172 0.085 0-000 
0.361 0.310 0.246 0.170 0.085 0-000 
0.345 0.299 0.240 0-168 0-085 0.000 
0.327 0.287 0-234 0.166 0.085 0-000 
0.307 0-272 0.226 0-163 0.084 0.000 
0.285 0.257 0.217 0.159 0-084 0-000 
0.269 0-245 0.210 0-156 0.083 0-000 
0.253 0.233 0.202 0-153 0.083 0-000 
0.229 0.214 0.190 0-148 0-082 0.000 
0.205 0.195 0.176 0-141 0.081 0-000 
0.184 0.176 0.161 0.133 0-079 0.000 
0-157 0.150 0-140 0.120 0-076 0-000 
0.125 0-121 0-115 0.103 0.071 0-000 
0.095 0.092 0.089 0-082 0.063 0.000 
0.063 0.062 0.061 0.058 0-049 0.000 
0.031 0.031 0.031 0.030 0.028 0-000 
0-000 0.000 0.000 0-000 0.000 0.000 
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4. Low- and high-temperature expansions 

It is frequently convenient to employ analytic series 
expansions in the limits of low and high temperatures. 

At low temperatures x --, m so that 

cov[uz(rl), uz(r2)] 

~__ + 

(ml mE)l/2 kOo 2(qor) 2 -6- 

and 

p(qDr, T/OD) 

= C(qor) + - ~  - [1 - C(qor)] 

+ -  {2[C(q~r)- 1] + (qor)2/5} 
9 

where 
+ . . . ,  

(21) 

C(z) = 2[(1 - cos z)/zZ]. (22) 

In the high-temperature limit x --, 0 and therefore 

COY [ U z ( r l ) ,  U z ( r 2 ) l  

3h2T (si(qor) 1 ( ~ )  2 

(ml mE) 1/2 kO2 qo r 12(qo r) 2 

[ sin(q°r) ] 
× cos (qD r) 

qo r 

+ 720(qD r) 2 ~ (qo r) 3 qo r 

× s i n ( q o r ) - - (  1 (qo6r) 2)c°s(qDr)] + . . .  } 

(23) 
and 
p(qor, T/OD) 

where 

s,,qor, ( t (O,qor, - - +  

qD r 12 

+ ~ 30D(q D 
32400 

cos(qD r ) / +  -.., 

% 

90 
) 

1 si(qor ) ) 
36 qDr 

r)[  9 7] 
(qo r) 2 

1 [sin(z) cos(z)]. 
D(z) = 7 z (24) 

5. Conclusions 

The original motivation for the present study was my 
interest in the computer simulation of the influence of 
thermal vibrations on atomic scattering in solids. Once 
the covariance is determined it is a relatively simple 
matter (Wilks, 1962) to simulate numerically an 
extended atomic array in three dimensions. Jackson & 
Barrett (1977) have described an algorithm which 
effects this procedure in an efficient manner. The major 
advantage of the present study over an earlier method 

Table 2. Tabulation of rl(x,y)for the commonly occurring monatomic b.c.c, and f.c.c, structures 

In these cases  y(=qor)  d e p e n d s  on ly  on  the a t o m  pai r  c o n s i d e r e d ;  it is i ndependen t  o f  the lat t ice cons tan t .  T o  a l low t abu la t i on  ove r  the 

full r ange  o f x  ( = O o / T ) ,  0 < x < o0, the  resul ts  are  p resen ted  as a func t ion  o f v  = x / ( l  + x) ,  0 < v <_ 1. 

0.0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1-0 

Atom 0.0 0.053 0.111 0.176 0.250 0-333 0.429 0.538 0.667 0.818 1.00 1.22 1.50 1.86 2,33 3.00 4.00 5.67 9.00 19.0 oo 
pair B.c.c. crystal 

½a(l,l,l) 0.401 0.399 0.397 0.394 0.392 0.388 0.385 0.380 0.375 0.370 0-363 0.354 0.344 0.331 0.315 0-293 0.262 0.220 0-161 0.084 0.000 
½a(2,0,0) 0.319 0.318 0.317 0.316 0.315 0.313 0.312 0.310 0.307 0.305 0.301 0-297 0.291 0-284 0.274 0.260 0.238 0-205 0.155 0.083 0.000 
½a(2,2,0) 0.209 0.209 0.208 0.208 0.208 0.208 0.208 0.207 0.207 0-206 0.205 0.204 0-203 0.201 0.197 0.192 0.183 0.167 0-136 0.080 0.000 
½a(3,1,1) 0.195 0.195 0.194 0.194 0.193 0.192 0.191 0.190 0.189 0-188 0.186 0-184 0.182 0.179 0.175 0.170 0.163 0.150 0.126 0.078 0.000 
½a(2,2,2) 0.192 0.191 0.190 0.190 0.189 0.188 0-187 0.186 0.185 0.183 0.181 0.179 0.177 0.174 0.170 0.165 0.157 0.146 0-123 0.077 0.000 
½a(4,0,0) 0.170 0.169 0.169 0.168 0.167 0.166 0.166 0.165 0.163 0.162 0.160 0.159 0.156 0.154 0-150 0.146 0.140 0.131 0.114 0.074 0.000 

F.c.c. crystal 

½a(1,1,0) 0.384 0.382 0.380 0.378 0.376 0.373 0.369 0.366 0.361 0.356 0.350 0.343 0.333 0-322 0.307 0-286 0.258 0-217 0.159 0.084 0.000 
½a(2,0,0) 0.229 0.229 0.229 0.229 0.229 0.229 0.229 0.229 0.228 0.228 0.227 0.226 0.224 0.222 0.218 0.212 0-200 0.180 0.143 0.081 0.000 
½a(2,1,1) 0.201 0.200 0.200 0.200 0.199 0.199 0.198 0.197 0.196 0-195 0.194 0.193 0.191 0.188 0.185 0.180 0.172 0.158 0.131 0.079 0.000 
½a(2,2,0) 0.189 0.188 0.187 0.187 0.186 0.185 0.184 0.183 0.181 0.180 0.178 0.176 0.173 0-170 0.166 0-161 0.154 0-143 0.122 0.076 0.000 
½a(3,1,0) 0.171 0.170 0.169 0-169 0.168 0.167 0.166 0.165 0.164 0.163 0-161 0.159 0.157 0.154 0.151 0-146 0.140 0.131 0.114 0.074 0.000 
½a(2,2,2) 0.150 0.149 0.149 0.149 0.148 0.148 0.147 0.147 0.146 0.145 0.144 0-143 0.142 0.140 0.137 0.134 0.130 0.122 0.108 0-073 0.000 
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which employed Fourier transformation (Martin, 1980) 
is that, in the present case, the atomic model is no 
longer restricted to a one-dimensional chain. 

It is clearly of interest to compare the present results 
with more sophisticated calculations for 'real' crystals. 
Jackson et al. (1975) have used the work of Nelson et 
al. (1962) to make a similar comparison and find 
agreement for Mo and Nb to within ~15% at high 
temperatures. Fig. 3 shows a comparison between the 
present theory (solid curves) and C h e n &  de Wette's 
(1978) and de Wette's (1980) calculations for the 
correlation coefficient in NaC1, LiF, MgO, RbF and 
RbC1. 

There is some ambiguity in the choice of qo for 
materials with the NaC1 structure. If the volume of the 
Debye sphere is made equal to that of the Brillouin 
zone then the existence of separate acoustic and optic 
modes is ignored. It seems preferable, at least for the 
present purpose, to choose qo such that the mean 
density of states in reciprocal space is correct, i.e. qD = 
2 x 6 I/3 7tE/3/a. The broken and dotted curves are the 
mean results of the last two references plus and minus 
the standard deviation, for atom pairs of separations 
½a(1,0,0) and ½a(1,1,0) respectively. In this case the 
agreement at high temperature is within ~ 25 %. 

At low temperatures the deviations are as high as 
~3 x in some cases. 

It is possible to account qualitatively for all these 
features if we consider the deviations of real phonon 
spectra from the Debye model. Lower correlations than 
predicted must be a consequence of a greater propor- 
tion of short-wavelength phonons. The fact that real 
phonon frequencies near the Brillouin zone boundary 
are typically less than the Debye model values explains 
why the correlations are generally lower for real 
crystals. Materials with the NaC1 structure, unlike Mo 
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Fig. 3. The temperature variation of the correlation coefficient in 
the present theory (solid curves) and the calculations of Chen & 
de Wette (1978) and de Wette (1980) for five ionic crystals with 
the NaCI structure (broken and dotted curves). The pairs of 
curves are the mean of their results, plus or minus the standard 
deviation. 

and Nb, will support optical phonons which will 
exacerbate this feature. Owing to the zero-point 
motion, the low-temperature correlation will give a 
higher weighting to the short-wavelength phonons, 
giving poorer agreement with the Debye result at low 
temperatures. 

This rather limited evidence suggests that the present 
simple method gives results for the correlations which 
are about as reliable, when compared with a full 
Born-yon Karman treatment, as are the Debye model 
results for (u2(r)). 

I would like to thank Mr R. P. Walker and Dr D. G. 
Armour for helpful comments and suggestions and 
Professor F. W. de Wette for kindly sending me 
extensive results of his calculations on ionic crystals. 

Note added in proof: The expression presented for 
the covariance is equivalent to that given by Nielsen & 
Weber (1980). 
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